主題:物理學

維基百科,自由的百科全書
物理主題首頁

編輯

物理學是一門自然科學,注重於研究物質能量空間時間,尤其是它們各自的性質與彼此之間的相互關係。物理學是關於大自然規律的知識;更廣義地說,物理學探索分析大自然所發生的現象,以了解其規則。

物理學是最古老的學術之一。在過去兩千年裏,物理學與化學天文學都曾歸屬於自然哲學。直到十七世紀科學革命之後,物理學才成為一門獨立的自然科學。物理學與其它很多跨領域研究有相當的交集,如生物物理學量子化學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。

物理學是自然科學中最基礎的學科之一。經過嚴謹思考論證,物理學者會提出表述大自然現象與規律的假說。倘若這假說能夠通過大量嚴格的實驗檢驗,則可以被歸類為物理定律。但正如很多其他自然科學理論一樣,這些定律不能被證明,其正確性只能靠著反覆的實驗來檢驗。

典範條目、優良條目

編輯

由卡西尼-惠更斯號太空探測器完成的對廣義相對論高精度之驗證
由卡西尼-惠更斯號太空探測器完成的對廣義相對論高精度之驗證

廣義相對論是一種關於引力理論,它在1907年到1915年由愛因斯坦完成。根據廣義相對論,物質之間的引力來自於時空的彎曲。在廣義相對論出現之前的200多年間,牛頓萬有引力定律被廣泛接受,它成功地解釋了物質之間的引力作用。但是,實驗和觀測都顯示,愛因斯坦對引力的描述能夠解釋多個由牛頓定律無法解釋的現象,比如水星和其他行星軌道的反常的進動。廣義相對論還預言了一些關於引力的顯著效應,比如重力波重力透鏡效應,還有引力場引發的時間膨脹。很多預言都已經被實驗所證實,還有一些正在探索中。廣義相對論已經成為現代天體物理學的重要工具。它提供了現在理解黑洞的基礎。其強大的引力也使一些天體發射出強烈的輻射。廣義相對論也是宇宙學的標準大爆炸模型的理論框架中的一部分。然而,到現在仍然有大量的問題沒有解決,其中最根本的是廣義相對論如何和量子力學結合而產生一個完整一致的量子引力理論。

精選圖片

編輯

電磁波譜包含電磁輻射所有可能的波長。特定波長的電磁波的能量 λ(在真空中)與頻率 ν 和光子能量 E 有關。波長頻率成反比,波長越大,頻率越小,反之,頻率越大,波長越小,其乘積是一個常數即光速c。另外,電磁波的能量與頻率成正比,係數為普朗克常量h。電磁波譜頻率從低到高為無線電波微波紅外線可見光紫外線X射線伽馬射線,可見光只是電磁波譜中一個很小的部分。圖為電磁波譜特性圖,描繪波譜了種類、波長、頻率、發散溫度。

本日推薦

編輯

氫原子的半徑大約為波耳半徑

氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只相依於二體之間的距離,是反平方連心力。我們不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。我們可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。

你知道嗎

編輯

未解決的物理學問題

編輯

絕對無法從磁棒製備出磁單極子。假設將磁棒一切為二,則不會發生一半是指北極,另一半是指南極的狀況,而會是切開的每一個部分都有其自己的指北極與指南極。

磁單極子:在最初宇宙、高能量的時期,粒子有否帶有磁荷?若有,則為何現在那麼難偵測到它們?現在有沒有任何磁單極子仍舊存在?(保羅·狄拉克指出,某種磁單極子的存在可以解釋電荷量子化)。

從哪裡開始

編輯 基礎物理學力學 | 熱學 | 電磁學 | 光學

核心理論: 經典力學 | 運動學 | 靜力學 | 動力學 | 拉格朗日力學 | 哈密頓力學 | 連續介質力學 | 流體力學 | 固體力學 | 電動力學 | 狹義相對論 | 廣義相對論 | 量子力學 | 量子場論 | 量子電動力學 | 量子色動力學 | 量子光學 | 弦理論 | 熱力學 | 統計力學

主要領域: 天體物理學 | 凝聚態物理學 | 原子物理學 | 分子物理學 | 光學 | 幾何光學 | 物理光學 | 原子核物理學 | 粒子物理學 | 等離子體物理學 | 介觀物理學 | 低溫物理學 | 固體物理學 | 晶體學

交叉學科: 天體物理學 | 大氣物理學 | 地球物理學 | 生物物理學 | 物理化學 | 材料科學 | 電子科學 | 計算物理 | 數學物理 | 非線性物理學

背景知識: 參看傳記, 科學史, 和學院介紹.

專題

編輯

WikiProjects
物理學專題

有關專題

什麼是維基專題?

共襄盛舉

編輯

物理新聞

編輯

2020年焦點新聞 下列日期是新聞發布時間,而非事件發表或發現時間

2019年

物理學史上的5月


前次刷新頁面時間為2024年5月13日 20時57分30秒 UTC,刷新頁面