环氧树脂

维基百科,自由的百科全书
环氧树脂和硬化剂隔离储存的环氧树脂胶注射器
环氧树脂中的反应性环氧基团

环氧树脂(英語:Epoxy resin),又稱作人工樹脂人造樹脂樹脂膠等,是分子中含有兩個或兩個以上環氧基團的高分子化合物,其与固化剂反应可生成热固性三维网状结构。它是非常重要的热固性塑膠,广泛用于黏著劑、涂料、粘接剂、电子产品封装、印刷电路板、航空、航天、军工等领域。[1][2][3][4]环氧基团的IUPAC名称是环氧乙烷(oxirane),预聚物和交联产物都可称为环氧树脂。

环氧树脂可以通过催化均聚与其自身反应(交联),或与多种共反应物反应,包括多官能胺、酸()、酚、醇和硫醇。 这些共反应物通常称为硬化剂或固化剂,而交联反应通常称为固化

接触环氧树脂化合物可能导致健康风险,包括接触性皮炎过敏反应,以及在化合物未完全固化时由于吸入蒸气和打磨粉尘而引起的呼吸问题。[5][6][7]

大多數人造樹脂由環氧氯丙烷(epichlorohydrin,)和双酚A(酚甲烷,bisphenol-A,)產生化學反應而成。

历史[编辑]

1934年,德国的保罗·施拉克首次申请了环氧化物和胺缩合反应的专利。[8]皮埃尔·卡斯坦在1943年也宣布发现基于双酚A的环氧树脂。卡斯坦的成果受瑞士汽巴公司授权,汽巴公司后来成为全球三大主要环氧树脂生产商之一。[9]1946年,西尔万·格林利在德沃和雷诺兹公司工作,申请了由双酚A和环氧氯丙烷交联树脂的专利。[10][11]

化学性质[编辑]

羟基与环氧氯丙烷偶联后发生脱卤作用

大多数商用环氧单体通过化合物与酸性羟基环氧氯丙烷反应生产。首先,羟基在偶联反应中与环氧氯丙烷反应,随后发生脱卤作用。从这种环氧单体生产的环氧树脂称为缩水甘油基环氧树脂。羟基可来自脂肪二醇、多元醇(聚醚多元醇)、酚类化合物或二羧酸。酚类化合物可以是双酚A和酚醛清漆(Novolak)等化合物。多元醇可以是1,4-丁二醇等化合物。二元和多元醇导致环氧基醚。诸如己氢邻苯二甲酸等二羧酸用于制备二环氧脂树脂。除了羟基外,酰胺的氮原子也可以与环氧氯丙烷发生反应。[12]

使用过酸合成环氧化物

环氧树脂的另一种生产途径是将脂肪族或环脂族烯烃与过氧酸转化为环氧单体:[13][14]与基于环氧树脂的环氧单体相比,这种环氧单体的生产不需要含酸性氢原子,而需要一个脂肪族双键。

双酚A基[编辑]

双酚A二缩水甘油醚的合成

最常见的环氧树脂基于环氧氯丙烷(ECH)与双酚A的反应,产生双酚A二缩水甘油醚(BADGE或DGEBA)。双酚A基树脂是最广泛商业化的树脂,但其他双酚,例如双酚F(BPF),也可以与环氧氯丙烷发生类似的反应。

在两阶段反应中,首先将环氧氯丙烷加入双酚A(形成双酚 A 二(3-氯-2-羟丙基)醚),然后与等量氢氧化钠发生缩合反应,形成双环氧化物。氯原子以氯化钠的形式释放,氢原子以水的形式释放。

摩尔质量双酚A-二缩水甘油醚的合成

双酚A二缩水甘油醚进一步与双酚A反应生成较高分子量的二缩水甘油醚(n≥1),称为预聚。重复单元(n=1~2)构成的产品是一种黏稠的清澈液体,称为液体环氧树脂。室温下,重复单元(n=2~30)构成的产品是一种无色固体,称为固体环氧树脂。

双酚A之外的其他双酚(尤其是双酚F)或溴化双酚(如四溴双酚A)也可用于上述环氧化和预聚。与双酚A树脂相比,这些树脂的粘度通常较低,每克平均环氧含量较高,因此固化后其耐化学性更强。

在制造过程中增加双酚A与环氧氯丙烷的比例,在催化剂的作用下同时进行开环、闭环反应,会在NaOH的作用下 ,ECH的环氧基团断开,与BPA的酚羟基结合,形成醚氧键。根据所达到的分子量,这些聚醚在室温下是半固体到硬结晶材料。 这种合成路线被称为“一步法(taffy)”工艺。[15]生产较高分子量环氧树脂的通常途径是从液体环氧树脂(liquid epoxy resin,LER)开始,添加计算量的双酚A,然后添加催化剂发生开环加成反应,生成开环产物,然后,在NaOH 的催化作用下,将反应加热至约 160 °C。 称为“两步法(advancement)”。[16]随着树脂分子量的增加,环氧化物含量减少,材料的行为越来越像热塑性塑料。非常高分子量的缩聚物(30–70 kg/mol)形成一类称为苯氧基树脂的物质,几乎不含环氧基团,因为末端环氧基团与分子的总大小相比微不足道。然而,这些树脂确实含有贯穿主链上的羟基,也可能发生其他交联反应,例如与氨基塑料、酚醛塑料和异氰酸酯等。

环氧树脂以聚合物、半聚合物或寡聚物的形式存在,因此很少以纯物质形式存在,因为生产环氧树脂的聚合反应会产生不同的链长。在某些应用中,例如使用蒸馏提纯工艺,可以生产出高纯度等级的产品。高纯度液体牌号的一个缺点是,由于其结构高度规则,容易形成结晶固体,因此需要熔化才能进行加工。

环氧树脂的一个重要标准是环氧值,它与环氧基团的含量有关。环氧值表示为“环氧当量重量”,即分子量与环氧基团数之间的比率。该参数用于计算环氧树脂固化时使用的共反应剂(固化剂)的质量。环氧树脂通常使用化学计量或接近化学计量的固化剂进行固化,以获得最佳的物理性能。

酚醛环氧树脂[编辑]

环氧苯酚酚醛清漆的一般结构,n通常在0~4范围内,以各种结构异构体的形式存在

酚醛树脂苯酚甲醛反应生成的。环氧氯丙烷和酚醛反应生成具有

缩水甘油残基的酚醛,如环氧苯酚酚醛(epoxyphenol novolak,EPN)或环氧甲酚酚醛(epoxycresol novolak,ECN)。这些高粘度固体树脂通常每个分子含有2到6个环氧基团。由于这些树脂具有高官能度和高交联密度,因此在固化过程中会形成高度交联的聚合物,具有较高的耐温性和耐化学性,但机械柔韧性较低。[13]

脂肪族环氧树脂[编辑]

3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯的结构

常见的脂肪族环氧树脂有两类:一类是通过双键环氧化作用获得的(环脂族环氧化物和环氧大豆油),另一类是通过与环氧氯丙烷反应形成的(缩水甘油醚和酯)。

环脂族环氧化物在含有环氧乙烷环的分子中含有一个或多个脂肪环(如3,4-环氧环己基甲基-3,4-环氧环己基甲酸酯)。它们是由环烯与过酸(见上文)反应生成的。[17]环脂族环氧化物的特点是脂肪族结构、环氧乙烷含量高且不含氯,因此粘度低、(固化后)耐候性好、介电常数低且Tg高。不过,脂肪族环氧树脂在室温下的聚合速度非常慢,因此通常需要较高的温度和合适的促进剂。由于脂肪族环氧树脂的电子密度低于芳香族环氧树脂,因此环脂族环氧树脂与亲核物的反应不如双酚A型环氧树脂(具有芳香族醚基)容易。这意味着传统的亲核固化剂(如胺)很难用于交联。因此,环脂族环氧化物通常在亲电或阳离子反应中通过热或紫外线引发均聚。由于环脂族环氧化物的介电常数低且不含氯,因此常用于封装电子系统,如微型芯片或LED。它们还可用于辐射固化涂料和清漆。然而,由于其价格昂贵,迄今为止其用途仅限于此类应用。[13]

环氧化植物油是由不饱和脂肪酸与过酸发生环氧化反应而形成的。在这种情况下,过酸也可以通过羧酸与过氧化氢的反应就地形成。与液态环氧树脂(liquid epoxy resins,LER)相比,它们的粘度非常低。但是,如果将它们作为反应性稀释剂使用的比例较大,往往会导致固化环氧树脂的耐化学性和耐热性降低,机械性能变差。大规模环氧化植物油(如环氧化大豆油和透镜油)在很大程度上用作PVC的二级增塑剂和成本稳定剂。[13]

低摩尔质量(单官能度、双官能度或多官能度)的脂肪族缩水甘油环氧树脂是由环氧氯丙烷与脂肪醇或多元醇(形成缩水甘油醚)或脂肪族羧酸(形成缩水甘油酯)反应而形成的。反应在氢氧化钠等碱存在下进行,类似于双酚A-二缩水甘油醚的形成。此外,与芳香族环氧树脂相比,脂肪族缩水甘油酯环氧树脂的粘度通常较低。因此,它们可作为活性稀释剂或粘接促进剂添加到其他环氧树脂中。还可添加由(长链)多元醇制成的环氧树脂,以提高拉伸强度和冲击强度。

脂肪族中有一类是环脂族环氧树脂,其分子中含有一个或多个环脂族环(如3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯)。这类稀释剂在室温下的粘度较低,但耐温性明显高于脂肪族环氧稀释剂。不过,与其他类别的环氧树脂相比,其反应活性较低,通常需要使用合适的促进剂进行高温固化。由于这些材料不像双酚A双酚F树脂那样具有芳香性,因此紫外线稳定性大大提高。

卤化环氧树脂[编辑]

掺入卤化环氧树脂,特别是溴化和氟化环氧树脂,可获得特殊性能。[13]

溴化双酚A用于需要阻燃性能的场合,如某些电气应用如印刷电路板。可将四溴化双酚A(tetrabrominated bisphenol A,TBBPA)或其二缩水甘油醚(2,2-双[3,5-二溴-4-(2,3-二溴丙氧基)苯基]丙烷)添加到环氧配方中。一些摩尔质量非常高的(非交联)环氧树脂添加到工程热塑性塑料中,同样是为了获得阻燃性能。

氟化环氧树脂研究用于一些高性能塑料,例如氟化二缩水甘油醚 5-七氟丙基-1,3-双[2-(2,3-环氧丙氧基)六氟-2-丙基]苯。由于表面张力较低,可作为润湿剂(表面活性剂)添加到与玻璃纤维的接触中。环氧树脂固化后形成的热固性塑料具有高耐化学腐蚀性和低吸水性。然而,含氟环氧树脂的高成本和低Tg值限制了其商业用途。

环氧树脂稀释剂[编辑]

环氧树脂稀释剂通常由脂肪醇或多元醇以及芳香族醇缩水甘油酯化而成。[18][19]可生成单官能团(如十二醇缩水甘油醚)、双官能团(1,4-丁二醇二缩水甘油醚)或更高官能团(如三羟甲基丙烷三缩水甘油醚)。这些树脂在室温下通常粘度较低(10-200 mPa·s),通常被称为活性稀释剂,使用稀释剂一般不会改善环氧树脂的机械性能,[20]很少单独使用,而是用来改变(降低)其他环氧树脂的粘度。[21][22]因此,“改性环氧树脂 ”一词意指含有降粘活性稀释剂的环氧树脂。[23]稀释剂的使用确实会影响环氧树脂的机械性能和微观结构。[24]生物基环氧稀释剂也有出现。[25]

缩水甘油胺环氧树脂[编辑]

缩水甘油胺环氧树脂是芳香胺与环氧氯丙烷反应生成的高官能度环氧树脂。其中重要的工业级产品包括对氨基苯酚缩水甘油醚(官能度 3)和4,4′-亚甲基二(N,N-二缩水甘油基苯胺)(官能度 4)。这种树脂在室温下具有中低粘度,因此比EPN或ECN树脂更容易加工。再加上高反应性、耐高温性和固化网络的机械性能,成为航空航天复合材料应用的重要材料。

固化[编辑]

固化动力学[编辑]

热固性塑料的固化动力学,模型包括非等温和等温模型,都通过DSC测试完成。[26]

非等温模型[编辑]

固化反应的动力学由活化能定义。活化能降低意味着完成反应所需的反应组分的能量较少,具有加速效应。活化能不能提供任何关于反应机理的信息,只有关于其速率的信息。[26]

Kissinger方法中,活化能可从动态扫描的放热峰温度中得到:[26]

其中是升温速率,是气体常数。作出对应的关系图即可从斜率计算活化能。该模型不仅适用于热固性塑料,还适用于热塑性塑料。

Ozawa方法的公式为:[26]

应用这两个模型来获得活化能,结果非常相似,但Ozawa模型的值略高。

等温模型[编辑]

等温固化反应热为:

其中是DSC测得的热流。DSC假设固化过程中放热量与反应性基团的消耗程度成正比,则反应热正比于反应程度

其中为非等温固化的总反应热,固化结束时的转化率通过减去总反应热的残余来计算:

反应速率与温度关系为:[26]

其中为转化度,为转化率。代表转化率的函数,与反应机理相关。是温度速率常数,假定为阿伦尼乌斯类型:[26]

其中,为常数。等温法可模拟两种类型的反应:级反应或自催化聚合。级反应中假设遵循以下方程:

Kamal提出的自催化聚合模型中,转化率和反应程度关联如下:[27]

其中,为促进剂催化的级反应速率常数,级自催化反应的速率常数。固化反应开始时,反应速率由分子反应性决定。随着固化程度的提高,反应速率越来越受扩散控制。凝胶化后,当分子的柔韧性在玻璃态下受到阻碍时,几乎无法达到完全转化。Fournier等人通过扩散因子扩展Kamal 模型:[28]

其中是等温固化结束时的转化率,是材料的经验扩散常数。

结构[编辑]

环氧树脂得名于其结构上的环氧基。双酚A型环氧树脂是最常用的环氧树脂。通过如同固化反应,环氧树脂可以形成三维交联高分子結構。

  • 基于胺类固化剂的固化反应:胺类固化剂可以打开环氧基。若所使用的胺类固化剂(常用的固化剂为双氰胺,DICY)有两个以上的功能团则可以生成交联結構。
  • 基于酐类固化剂的固化反应:酐类固化剂在胺催化剂的作用下可以和环氧基反应。酐类固化剂还可以在氢氧根的催化作用下和环氧基反应。
  • 其他:苯酚也可以同环氧基反应。

性质[编辑]

化学性质[编辑]

环氧树脂固化过程为放热反应,当使用快速催化剂铸造大型零件时需要注意散热,防止温度上升过高达到小分子沸腾温度。燃燒時產生黃色火焰;有酚類的味道。

环氧树脂具有仲羟基环氧基仲羟基可以与异氰酸酯反应。环氧树脂作为多元醇直接加入聚氨酯胶黏剂含羟基的组分中,使用此方法只有羟基参加反应,环氧基未能反应。

用酸性树脂的羧基,使环氧开环,再与聚氨酯胶黏剂中的异氰酸酯反应。还可以将环氧树脂溶解于乙酸乙酯中,添加磷酸加温反应,其加成物添加到聚氨酯胶黏剂中,可使胶的初黏、耐热性以及水解稳定性等都得到提高。

物理性质[编辑]

  • 密度:1.1~1.2公克/立方公分(與固化程度有關)

生產[编辑]

工业生产[编辑]

环氧树脂在全世界的年产值大约150亿美元。环氧树脂在美国的主要生产厂家和品牌包括Hexion(原Shell Development Company)的Epon,陶氏化工的D.E.R牌和亨斯邁公司(Huntsman)先进材料业务部(原汽巴精化)的Araldite牌。

应用[编辑]

环氧树脂广泛用于:

  • 涂料及黏合剂
  • 模铸各种电子器件、集成电路封装材料和电路板
  • 制造工业零件制品等
  • 罐內層,尤其是酸性的食品或飲料,例如汽水
  • 土木建築結構物補強,可與碳纖維或玻璃纖維搭配使用成為具有極高抗拉強度的補強材料。
  • 用於作為人造石的生產。
  • 防水材料。

电气系统和电子产品[编辑]

环氧塑封料与芯片级电子胶黏剂与半导体封装技术的发展息息相关,是保证芯片功能稳定实现的关键材料,极大影响了半导体器件的质量。环氧树脂配方在电子工业中非常重要,可用于电动机、发电机、变压器、开关设备、衬套、绝缘体、印刷电路板半导体封装。环氧树脂是优良的电绝缘体,可保护电气元件免受短路、灰尘和潮气的影响。在电子工业中,环氧树脂用于集成电路晶体管混合集成电路包覆成型以及制造印刷电路板。体积最大的电路板类型——FR-4由编制玻璃纤维布与耐火环氧树脂组成。由于经过封装后的半导体器件需要在高温高湿处理后,仍能够耐受260 ℃的无铅回流焊,并要求封装材料在该过程中不会由于应力过高而出现分层或开裂、电性能失效等情况,因此,需要通过多种理化性能指标(流动长度、热膨胀系数、玻璃化转变温度、粘度、吸水率、介电常数),以实现工艺性能以及应用性能要求。[29]

环氧树脂可用于灌封变压器和电感器。通过在未固化的环氧树脂上使用真空浸渍,可以消除绕组与绕组、绕组与铁芯、绕组与绝缘体之间的空气孔隙。固化后的环氧树脂电绝缘,导热比空气更好。变压器和电感器的热点大大减少,优化元件的稳定性和寿命。

环氧树脂一般使用树脂点胶技术

环境与安全[编辑]

环氧基会与人体内的多种基团反应,因此通常被认为是有毒或者致癌物质,在使用的时候应该避免皮肤接触。环氧树脂的固化剂大多也是有毒物质。

環氧氯丙烷()易燃,含毒性和致癌物質。

双酚A(酚甲烷,)是內分泌干擾素(也就是擾亂生殖系統的化學物質)。

根據綠色和平組織(GreenPeace)於2006年4月發表的報告《我們的生殖健康和化學暴露》(Our reproductive health and chemical exposure),双酚A可影響男性生殖器官、導致早熟、母乳減少[30]

老化[编辑]

在使用过程中,环氧树脂容易出现老化现象,如表面黄化、失去光泽、裂纹和整体力学性能下降,从而影响其使用寿命。老化的内因主要包括材料的组成、链结构、聚集态结构以及杂质,外因则包括环境条件如光、热、氧、水分、高能辐射、化学介质和电场等因素。目前环氧树脂常见的老化形式主要有物理老化、热氧老化、湿热老化、光氧老化等。目前的防老化措施主要分为两类:一是对环氧树脂本体结构进行改性,减少老化薄弱点;二是加入高效防老剂,减缓环境因素对环氧树脂的降解作用。[1]

目前,常用的方法来延缓环氧树脂材料的老化包括添加有机小分子稳定剂或无机纳米粒子,以及进行共聚共混改性。有机小分子稳定剂根据其作用机理主要分为:热稳定剂(亚磷酸酯和多元醇等);光稳定剂(水杨酸苯酯类、邻羟基二苯甲酮类、邻羟基苯并三唑类、羟基苯三嗪类和受阻胺类);抗氧剂(酚类、胺类和硫代二丙酸酯类等)。[1]

物理老化[编辑]

环氧树脂具有高玻璃化转变温度和交联网络结构,导致链段运动受限,容易形成冻结状态,在成形过程中可能形成不平衡构象。因此,随着环境条件下放置时间的增加,环氧树脂材料容易发生物理老化,结构逐渐向平衡态转变,达到更低能量状态。物理老化会导致环氧树脂材料的自由体积减少,从而增加其模量、密度和拉伸强度,但降低冲击强度和断裂伸长率,使整体材料的韧性下降,从而影响使用性能。[1]

热氧老化[编辑]

在含氧环境中,聚合物会受到热激发,分子链会吸收氧气并生成不稳定的氢过氧化物。这些氢过氧化物可能引发聚合物主链的重排反应,导致断链或交联反应,从而造成聚合物材料性能下降,出现热氧老化现象。在加工、贮存和使用过程中,环氧树脂通常会接触到空气,在一定温度下,环氧树脂容易发生热氧老化。氧化重排主要发生在厚度小于 100 μm 的样品皮层,可能与氧的扩散深度有关。[1]

湿热老化[编辑]

固化环氧树脂材料由于具有三维网状结构和含有极性亲水基团(如羟基、胺基等)以及吸水性强的填料(如玻璃纤维等),导致其吸水率高、吸湿性强。在高湿或雨水环境下,环氧树脂材料会出现明显的湿热老化现象,导致性能下降,无法满足使用要求。[1]

湿热老化过程中,环氧树脂复合材料会出现明显的界面破坏现象。这是因为树脂基体会溶胀,对填料产生剪切作用,当这种作用超过界面粘结力时,填料与基体会发生脱粘现象。同时,水分子在界面处的渗透作用也会破坏填料与基体之间的结合作用。[1]

光氧老化[编辑]

聚合物的光氧老化机理与热氧老化机理相似,都包括自由基的引发、增长和终止三个反应阶段。它们的主要区别在于光氧老化的引发源更多,例如催化剂残留、添加剂、金属离子、双键和含羰基化合物等。[1]

参考[编辑]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 刘世乡; 胥泽奇; 赵方超; 姜艾锋; 李晗; 杨华明; 陈佳宏. 环氧树脂材料的老化及防老化研究进展. 装备环境工程. 2021–11–17, 20 (1): 127-134. doi:10.7643/issn.1672-9242.2023.01.018. 
  2. ^ May, Clayton. Epoxy Resins: Chemistry and Technology 2nd. CRC Press. 2018: 65. ISBN 978-1-351-44995-3. 
  3. ^ US Patent Application for FIRE-RESISTANT GLAZING Patent Application (Application #20130196091 issued August 1, 2013) - Justia Patents Search. patents.justia.com. [2022-04-27]. 
  4. ^ Sukanto, Heru; Raharjo, Wijang Wisnu; Ariawan, Dody; Triyono, Joko; Kaavesina, Mujtahid. Epoxy resins thermosetting for mechanical engineering. Open Engineering. 2021-01-01, 11 (1): 797–814. Bibcode:2021OEng...11...78S. ISSN 2391-5439. S2CID 235799133. doi:10.1515/eng-2021-0078可免费查阅 (英语). 
  5. ^ Health Effects from Overexposure to Epoxy • WEST SYSTEM. WEST SYSTEM. [2021-06-11]. 
  6. ^ Holness, D. Linn; Nethercott, James R. Occupational Contact Dermatitis Due to Epoxy Resin in a Fiberglass Binder. Journal of Occupational Medicine. 1989, 31 (2): 87–89. ISSN 0096-1736. JSTOR 45015475. PMID 2523476. 
  7. ^ Mathias, C. G. Toby. Allergic Contact Dermatitis from a Nonbisphenol A Epoxy in a Graphite Fiber Reinforced Epoxy Laminate. Journal of Occupational Medicine. 1987, 29 (9): 754–755. ISSN 0096-1736. JSTOR 45007846. PMID 3681510. 
  8. ^ Schlack, P. (1938) "Manufacture of amines of high molecular weight, which are rich in nitrogen". German Patent 676117, 美國專利第2,136,928号
  9. ^ US 2444333,Castan, Pierre,「Process for the manufacture of thermosetting synthetic resins by the polymerization of alkylene oxide derivatives」,发行于1948-06-29 
  10. ^ History of Epoxy Resin. epoxyflooringtech.com. 27 March 2017. 
  11. ^ US 2456408,Sylvan Owen Greenlee,「Synthetic drying compositions」,发行于1948-12-14 
  12. ^ profit http://dx.doi.org/10.21776/ub.profit.2021.015.02. 2023-01-04, 015 (02). ISSN 1978-743X. doi:10.21776/ub.profit.2021.015.02.  缺少或|title=为空 (帮助)
  13. ^ 13.0 13.1 13.2 13.3 13.4 Pham, Ha Q.; Marks, Maurice J. Epoxy Resins. Ullmann's Encyclopedia of Industrial Chemistry. 2005. ISBN 3527306730. doi:10.1002/14356007.a09_547.pub2. 
  14. ^ Kaiser, Wolfgang (2011) Kunststoffchemie für Ingenieure. Vol. 3. Hanser, Munich. pp. 437 ff. ISBN 978-3-446-43047-1.
  15. ^ Li, Ya Feng; Cheng, Jue. Quantitative Analysis Methods of Thiirane/Epoxy Resin of Bisphenol A. Advanced Materials Research. 2006-02, 11–12. ISSN 1662-8985. doi:10.4028/www.scientific.net/amr.11-12.379. 
  16. ^ Hofer, Arnold; Schneider, Hildegard, and Siegenthaler, Nikolaus (1996) "Epoxy resin mixtures containing advancement catalysts", 美國專利第5,521,261号.
  17. ^ Hammerton, L. (1996) Recent Developments in Epoxy Resins. Ed.: Rebecca Dolbey. RAPRA Review Reports. p. 8. ISBN 978-1-85957-083-8.
  18. ^ JPH06172336A,Oda, Toshio; 敏男 小田 & Masakazu Tomita et al.,「Reactive diluent for epoxy resin」,发行于1994-06-21 
  19. ^ Diluting Agent - an overview | ScienceDirect Topics. www.sciencedirect.com. [2022-03-09]. 
  20. ^ Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali. The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Polymer Bulletin. 2019-08-01, 76 (8): 3905–3927. ISSN 1436-2449. S2CID 105389177. doi:10.1007/s00289-018-2577-6 (英语). 
  21. ^ Monte, Salvatore J., Pritchard, Geoffrey , 编, Diluents and viscosity modifiers for epoxy resins, Plastics Additives: An A-Z reference, Polymer Science and Technology Series 1 (Dordrecht: Springer Netherlands), 1998, 1: 211–216 [2022-03-09], ISBN 978-94-011-5862-6, doi:10.1007/978-94-011-5862-6_24 (英语) 
  22. ^ Jagtap, Ameya Rajendra; More, Aarti. Developments in reactive diluents: a review. Polymer Bulletin. 2022-08-01, 79 (8): 5667–5708. ISSN 1436-2449. S2CID 235678040. doi:10.1007/s00289-021-03808-5 (英语). 
  23. ^ Sinha, Animesh; Islam Khan, Nazrul; Das, Subhankar; Zhang, Jiawei; Halder, Sudipta. Effect of reactive and non-reactive diluents on thermal and mechanical properties of epoxy resin. High Performance Polymers. 2017-12-18, 30 (10): 1159–1168. ISSN 0954-0083. S2CID 104235230. doi:10.1177/0954008317743307. 
  24. ^ Khalina, Morteza; Beheshty, Mohammad Hosain; Salimi, Ali. The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Polymer Bulletin. 2019-08-01, 76 (8): 3905–3927. ISSN 1436-2449. S2CID 105389177. doi:10.1007/s00289-018-2577-6 (英语). 
  25. ^ Chen, Jie; Nie, Xiaoan; Liu, Zengshe; Mi, Zhen; Zhou, Yonghong. Synthesis and Application of Polyepoxide Cardanol Glycidyl Ether as Biobased Polyepoxide Reactive Diluent for Epoxy Resin. ACS Sustainable Chemistry & Engineering. 2015-06-01, 3 (6): 1164–1171. doi:10.1021/acssuschemeng.5b00095. 
  26. ^ 26.0 26.1 26.2 26.3 26.4 26.5 Harsch, Margit; Karger-Kocsis, József; Holst, Marco. Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. European Polymer Journal. 2007-04, 43 (4). ISSN 0014-3057. doi:10.1016/j.eurpolymj.2007.01.025. 
  27. ^ Kamal, M. R.; Sourour, S. Kinetics and thermal characterization of thermoset cure. Polymer Engineering & Science. 1973-01, 13 (1). ISSN 0032-3888. doi:10.1002/pen.760130110. 
  28. ^ Fournier, Jérôme; Williams, Graham; Duch, Christine; Aldridge, George Anthony. Changes in Molecular Dynamics during Bulk Polymerization of an Epoxide−Amine System As Studied by Dielectric Relaxation Spectroscopy. Macromolecules. 1996-01-01, 29 (22). ISSN 0024-9297. doi:10.1021/ma9517862. 
  29. ^ 江苏华海诚科新材料股份有限公司首次公开发行股票并在科创板上市招股说明书 (PDF). 2022-06-13 (中文). 
  30. ^ Fragile: Our reproductive health and chemical exposure (PDF). GreenPeace. 2006-05 [2016-01-25]. (原始内容存档 (PDF)于2016-02-01) (英语). 

外部連結[编辑]